The use of Differentiation in Thermodynamics
1/. Simple Differentiation – what does it mean?

a/. Straight Line graphs and their slopes

Suppose that we have a pile of satsumas, each of which weighs exactly 150 g.

If we add them to a shopping bag one at a time then the mass of fruit in the bag, M, will increase as the number of satsumas, S, increases – as shown below.
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The rate of increase of mass is “150 g per Satsuma”.

Note that this rate of increase is equal to the slope 
of the line on the graph.

Suppose that we were to cut a small sliver of Satsuma “ΔS” and add it to the bag. The mass would then increase by a small amount “ΔM”, such that

ΔM = 150 ΔS

or    
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We now make ΔS infinitesimally small, writing it as dS to show that this is what we have done. 
ΔM now becomes the infinitesimally small quantity dM; however, the relationship 
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still holds good, so the value of dM is still 150 times bigger than the value of dS.

The quantity 
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  is called “a derivative” – it tells us about the slope of the line defining the relationship between M and S.
In this first example this is a trivial concept as the relationship is a straight line and so the slope is the same whatever value we choose for S, so it is always true that:
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    g per Satsuma.

b/. Graphs which aren’t straight lines

Now let’s take a slightly more complicated example – how does the area, A, of a circle change as we increase its radius, r?

We know that the two quantities are related by: 
A = πr2 
so the graph looks like this:
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Now, as r increases, the slope of the line, defined by the ratio 
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, increases also, i.e. the bigger the value of r, the steeper the line gets.

The line is always curved, but if we let Δr and (as a consequence) ΔA become infinitesimally small (i.e. we replace them by dr and dA) we can approximate the curved line by a straight segment (inset in graph), whose slope is the same as that of the tangent to the curve at this point (a tangent is a straight line that just touches a curve at a single point but does not cut through the curve). 

It should be obvious from the picture above that the slope of the line relating r to A, i.e. 
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  is no longer constant but increases as r increases.
This is the most important thing to realise about “differentials” or “derivatives” – they tell you about the slope of the curve relating two quantities, in this case A and r. In other cases may not know what the equation is that links two quantities “y” and “x”; it will still be true though that the derivative:
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tells us the value of the slope of the curve relating the value of y to the value of x.
In this example of the area of the circle, we do know what the equation relating A to r is and so we can go a bit further. We can calculate the value of the slope, for any value of r as follows.

i/. Firstly, we say that: 
“when r is equal to r, then the area, A = πr2 ”
ii/. We now add a little bit on to r, increasing its value to:

(r + Δr)

iii/. We now calculate the new value of A:

A = π(r + Δr)2 = π(r2 + 2rΔr + Δr2)

iv/. subtracting (i) from (iii) we find the increase in area:

 ΔA = π(2rΔr + Δr2)

v/. We now let Δr become very, very small, i.e. we let it tend to the infinitesimally small value dr. When we do this, we find that the term Δr2 in (iv) above becomes very, very, very, very small and so we can ignore it. 

Thus in the limit as Δr tends to dr, ΔA tends to the value 
π2rdr 
and so the slope of the curve 
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Thus, as expected we find that as r increases so does the slope of the curve.

We were able to work out the value of the slope because we knew the mathematical form of the equation linking A to r, but it is important to realise that even if we did not know what this equation was it would still be true to say that:

“the slope of the curve linking A and r is given by 
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2/. Partial Differentiation
a/. A simple example

Let us go back to the first example, but let us now suppose that we have a number, G, of grapefruit, each weighing exactly 1200 g, as well as a number, S, of satsumas.

The total mass of fruit can now be written as 
M = 150 S + 1200 G
To plot this relationship out, we would now need a 3-dimensional graph (note that if we also included oranges, O, our plot of M vs S, G and O would need to be 4-dimensional).
If we hold the number of grapefruit fixed and add more satsumas, then (just as it did before) M increases at a rate of 150 g/Satsuma.

Similarly, if we hold the number of satsumas fixed, and add more grapefruit, then M increases at a rate of 1200 g/Grapefruit.

We write these rates of increase as:
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= 150 g / Satsuma and 
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= 1200 g /Grapefruit respectively.
If we now add an infinitesimal sliver of Satsuma, dS and an infinitesimal sliver of grapefruit, dG to our bag of fruit, we can calculate the infinitesimal increase in mass, dM, from 

dM = 150 dS + 1200 dG

i.e. 
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The quantities 
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and 
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are called partial derivatives. They tell us how fast M changes with S if G is held fixed and how fast M changes with G if S is held fixed respectively. 

Thus, we have used partial derivatives to let us write the infinitesimal change dM in terms of infinitesimal changes in S and in G. Just as in the first example, where we only had the satsumas, the mathematics is trivial in this case as 
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are both constant.
b/. A slightly more complicated case
The volume, V, of a cylinder of radius, r, and height, h, is given by the area of the base of the cylinder (πr2) multiplied by its height. Thus,
V = πr2h
How fast does V increase if we increase r but keep h fixed? This is the quantity 
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Similarly, 
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tells us how fast V increases if we increase h but keep r fixed.

Thus, if we change r by dr and h by dh we can calculate the resulting infinitesimal change in V from 
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(1)
This equation is the important one to remember, but, in this particular case, as we know the equation linking V, r and h, we can derive mathematical expressions for the two partial derivatives; using exactly the same procedure that we used (1/b/. above) we find that  
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     and      
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And so finally:
dV = (2πrh)dr + (πr2)dh
It is important to realise that we can only write equations of the form given in (1) above if we know that there must be some mathematical relationship linking (in this case) V, r and h – we do not need to know what the equation is, we just need to know that such an equation exists.
c/. Applications to thermodynamics
This concept is used a lot in thermodynamics, where, if it is known that the quantities X, Y, and Z must be linked by some equation, we know that we must be able to write
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If dX can be written in this form, it is termed an “exact differential” or a “perfect differential” and 
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is the “partial derivative of X with respect to Y at constant Z” (etc.)

Note that not all thermodynamic quantities may be evaluated in this way; when they cannot be written in terms of partial derivatives, we call them “inexact”. The notation generally used is that if an infinitesimal change in a quantity R is inexact, it is written as đR.

A proof:
If 
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Then by the definition of partial derivatives: 
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(1)

For a system undergoing mechanical work and heating, we may rewrite the 1st law of thermodynamics in terms of reversible infinitesimal changes in internal energy, entropy and volume:
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Equation (1)  allows us to re-write the infinitesimal changes in U (dU) and in S (dS) in terms of infinitesimal changes in T and V, dT and dV (we could also do this for the PdV term but it is not necessary in this case). NB this is just re-writing dU and dS in terms of partial derivatives, NOT differentiating in the sense of evaluating derivatives.



dU





dS

---------------------------------------
 -----------------------------------------
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At constant volume
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Therefore
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This must be true for any change dT;  therefore the multipliers of dT on both sides must be equal.
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